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ABSTRACT 

As society increasingly moves towards sustainable urban growth, urban planners and city officials require 

tools that efficiently support spatial decision-making. Modeling and simulation (M&S) have been shown 

to be an adequate tool in this case. Cell-DEVS offers an optimized method of spatial simulation that can 

tackle computationally complex scenarios such as urban growth. To demonstrate this, we implement and 

discuss a well-known model, logistic urban growth (LUG), using the Cell-DEVS formalism. We show that 

this implementation supports the standard characteristics of LUG models by studying the variation of 

different parameters of the model such as restricted growth areas, spatial configuration and distance to 

features of interest. 

Keywords: DEVS, Cell-DEVS, Visualization and Analysis, Logistic Urban growth.

1 INTRODUCTION 

Earlier this year, the Population Division of the Department of Economic and Social Affairs of the United 

Nations published preliminary results of its Revision of World Urbanization Prospects. They report that, as 

of today, 55% of the world population lives in urban areas and the proportion is expected to rise to 68% by 

2050 (United Nations 2018). The projected number for 2050 is 4 points higher than the one published in 

2014 indicating a faster than anticipated global urbanization process (United Nations 2014). Furthermore, 

it found that 82% of North Americans, 81% of South Americans and 74% of Europeans now reside in urban 

areas. This report denotes, in an obvious manner, that sustainable urbanization should be a central goal for 

our society. 

Modeling and simulation (M&S) of urban growth patterns has shown to be an efficient tool to support 

decision-making for urban planners and city officials when planning future urban development. In this 

context, M&S allows planners to quickly evaluate different scenarios at a low cost. Various approaches 

have been used to model urban growth, many of which rely on the cellular automata method (Shafia et al. 

2018, Li et al. 2017, Ke et al. 2016). Unsurprisingly, a large portion of the research originates from China 

and India, the two countries expected to contribute the most to urban growth in the future. 

Urban growth modeling is data intensive and involves complex dynamic processes; it can be 

computationally prohibitive. The Cell-DEVS (Discrete Event System Specification) approach offers a 

potential solution to this problem. In this paper, we show that Cell-DEVS can adequately represent urban 

growth by implementing a well-known method of urban growth modelling, logistic urban growth (LUG). 

We demonstrate that a Cell-DEVS model can consider restricted growth areas, distance to important 

geographic features, neighborhood urbanization and variations in spatial configuration. 
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2 BACKGROUND 

Cell-DEVS is an extension of DEVS that can be used for modeling and simulation of systems in a cell 

space. It is a combination of DEVS and cellular automata (CA) with explicit timing delays (Wainer 2009). 

Each cell becomes an individual atomic model and the cell space becomes a coupled model where all the 

cells are linked to their neighbors through input and output ports, as in regular DEVS models. Each cell 

receives N inputs, usually from neighboring cells but they could also be provided by a regular DEVS model.  

When a cell receives inputs, it triggers τ, the local computing function that will determine the next state, s′. 

At this moment, if the cell’s future state s′ is different than its current state s, it will schedule an output of 

its new state following a transportation delay specified by d. Whenever a cell changes state, its new state s′ 

and scheduled time for transition are added to a local queue. Cells with transport delays will always output 

their new state, provided a state change has occurred. If a cell’s state does not change following the local 

computing function τ, it becomes passive and waits for further external events. 

Cells can also be implemented using inertial delays which allow pre-emption of the cell’s state transition. 

A cell with inertial delay that does not manage to keep its new state until the next scheduled time elapses 

is pre-empted and foregoes its output phase for the pre-empted state transition. The inner workings of a cell 

with inertial delay are slightly different than one with transport delays, interested readers should refer to 

(Wainer 2009) for a more thorough explanation. 

Urban growth modeling and simulation has generated large amounts of research in the past few years. 

Researchers have employed numerous approaches to simulate the spread of urbanization across space and 

time. Artificial Neural Networks (ANN) based methods have been in use for at least 15 years (Pijanowski 

et al. 2002, Yeh, Xia, 2004) but seem to be experiencing a resurgence in popularity in the past few years. 

For example, Pijanowski et al used an ANN based land transformation model (Pijanowski et al. 2014) 

within a geographic information system (GIS) environment to simulate urban growth. Grekousis et al. also 

used ANN combined with fuzzy set logic within a GIS environment to simulate urban growth in the Athens 

area. (Grekousis et al., 2013) 

However, the bulk of urban growth modelling and simulation is accomplished by combining the cellular 

automata (CA) approach with other modelling techniques. CA is generally accepted as the most efficient 

method to model and simulate urban growth due to its simplicity, adaptability and for its ease of integration 

with other modeling techniques (Aburas et al. 2016, Santé et al. 2009, 2010). In their extensive reviews of 

urban growth CA research, Aburas et al, as well as Santé et al identify a very large number of CA based 

techniques and discuss their strong points and weaknesses. Detailing all of them, in the scope of this paper, 

would be a redundant exercise. Instead, we will only present some of the more notable examples.   

In recent research, the most widespread urban growth CA methods are based on Logistic Regression (LR), 

Markov Chains (MC), SLEUTH and Fuzzy Logic. In LR based CA models, the logistic equation drives the 

urbanization process and the coefficients within the equation are obtained by regression. Since it is based 

on a mathematical equation, LR CA has difficulty considering the complex relationships in an urban growth 

scenario. Nonetheless, it has been used frequently in the past few years and improvements to the model are 

consistently being put forth (Shu et al. 2017, Feng 2017, Li et al. 2017). MC-CA models predict the future 

urbanization state of a cell-space by analyzing its urbanization state from previous iterations using 

stochastic processes. This approach can be used with limited datasets but fails to consider socio-economic 

factors (Al-Sharif, Pradhan 2013). SLEUTH based CA methods take their name from the parameters they 

consider namely, slope, land use, exclusion, urban extent, transportation, and hill shade. SLEUTH has some 

issues that are well documented by its inventor (Clark 2008) but it has been used to simulate urban growth 

for the past 20 years (Chaudhuri, Clarke, 2014). Methods based on Fuzzy CA involve clustering space using 
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fuzzy logic (Grekousis et al., 2013). This allows one element to belong to multiple clusters to a certain 

degree, facilitating complex analysis. The main advantages of Fuzzy CA is that it considers statistical 

correlations between predictor factors and it supports large, complex data sets (Aburas et al. 2016). 

A common approach to simulate urban growth over time and space is to use the logistic cellular automata 

(LCA) model. The transition rules for this model are based on variations of the logistic equation developed 

by Pierre-François Verhulst in the early 19th century (Verhulst, 1845, Brauer, Castillo-Chàvez, 2001). 

Briefly put, the equation states that population growth, unimpeded by external factors, will follow an 

exponential curve that will diminish as population grows and completely stop at population maturity. This 

equation is used in a large range of fields including chemistry, ecology, demography, economics, etc.  

Feng Y. and Shu B. & al. have proposed models that expand the logistic equation in similar ways (Feng, 

2017, Shu & Al. 2017). In both cases, the models consider a Moore neighborhood of variable size (3 X 3, 

5 x 5 or 7 x 7), the cells have a binary value (0 for non-urban, 1 for urban), and some cells are restricted. 

The probability that a non-urban cell transitions to an urban cell is defined using the following equation:  

 
𝑃𝑖𝑗

𝑡 = 𝑃𝑑𝑖  ×  𝑃𝑁𝑖,𝑡 × 𝐶𝑜𝑛 (1) 

Where 

𝑃𝑖𝑗
𝑡  Probability of transition for cell i, j at time t 

𝑃𝑑𝑖  Probability of transition contributed by distance to geographical features 
𝑃𝑁𝑖,𝑡  Probability of transition due to urban neighbors  

𝐶𝑜𝑛 
Represents physical constraints for urbanization (i.e. water, canyon, 
protected zones, etc. 

This equation can be expanded to the following:  

 
𝑃𝑖𝑗

𝑡 =
1

1 + 𝑒−(𝑎0+∑ 𝑎𝑛𝑥𝑛,𝑖𝑗
𝑚
𝑛=1 )

×
∑ 𝑐𝑜𝑛(𝑆𝑥𝑦 = 𝑢𝑟𝑏𝑎𝑛)

𝑥,𝑦=𝑛
𝑥,𝑦=1

𝑛2 − 1
× 𝐵𝑖𝑛(𝑐𝑒𝑙𝑙𝑖𝑗 ≠ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) (2) 

Where 

𝑎0 A constant 
𝑎1, 𝑎2 … 𝑎𝑚 Regression coefficients for distance factors  

𝑥𝑛,𝑖𝑗  Normalized distance to geographical feature 
𝑐𝑜𝑛 A condition that returns 1 if the x, y cell is urbanized. 
𝐵𝑖𝑛 A binary function that returns 1 if the cell is not restricted 

In (2), the regression coefficients a1, a2…am are obtained by calibrating the model using existing data and a 

regression technique. Furthermore, some authors advocate adding a stochastic disturbance to this equation 

(Feng 2017, White et al. 1993). This provided interesting analysis opportunities, so it was also considered 

in this experimentation.  

 𝑅 = 1 + (− ln 𝑟)𝑎  (3) 

Where 

𝑅 Stochastic disturbance applied to the probability of transition 
𝑟 Random real number between 0 and 1 
𝑎 A parameter (0 to 10) that adjusts the effect of the stochastic factor 
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Considering the stochastic disturbance, the probability of transition becomes:  

𝑃𝑖𝑗
𝑡 =

1

1 + 𝑒−(𝑎0+∑ 𝑎𝑛𝑥𝑛,𝑖𝑗
𝑚
𝑛=1 )

×
∑ 𝑐𝑜𝑛(𝑆𝑥𝑦 = 𝑢𝑟𝑏𝑎𝑛)

𝑥,𝑦=𝑛
𝑥,𝑦=1

𝑛2 − 1
× 𝐵𝑖𝑛(𝑐𝑒𝑙𝑙𝑖𝑗 ≠ 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑) × (1 + (− ln 𝑟)𝑎) (4) 

With the objective of modeling urban growth using a Cell-DEVS approach, we opted to use the Logistic 

CA approach due to its simplicity to implement and its widespread use in urban growth CA research. The 

goal is to demonstrate that the discrete event specification is a suitable technique to model and simulate this 

phenomenon. 

3 LOGISTIC URBAN GROWTH (LUG) AS A CELL-DEVS MODEL 

To demonstrate the application of the formalism to this model, we used a basic mock map that provided 

geospatial features of interest. This was done to avoid the otherwise complex and time-consuming image 

analysis pre-processing required to obtain the initial values for the cell-space. In order to deal with real 

source maps, we need to consider many intricacies that are outside the scope of this research. For example, 

anti-aliasing makes it difficult to automatically separate these images into well-defined initial states. 

Another example is the complexity of the geospatial data: hydrography, road networks, buildings, etc.  

The regression coefficients were not calibrated from training data. In a real-world scenario, regressing the 

coefficients would involve comparing the real future state of the cell-space with the simulator generated 

future state of the cell-space, modifying the coefficients and iterating in this manner until satisfactory 

coefficients were found. Again, we employed this simplification to avoid a time-consuming process that is 

outside the scope of this research. Instead, the coefficients were varied methodically so that their impact on 

the simulation could be studied through visualization and analysis tools. 

The final assumption we adopted was that the spatial configuration of the geographical map was static 

across the time span of the simulation. In real-world scenarios, it would be possible for the configuration 

to evolve, for example, a new road could be constructed mid-simulation. This assumption allowed us to 

pre-process the first factor in the LUG equation (4) prior to running the simulation and save it on a separate 

layer where it could easily be retrieved by the simulation engine at runtime.  

3.1 The formal DEVS model 

To execute the simulation, we employed CD++, a mature simulation engine specialized in DEVS simulation 

on cell-spaces. Additionally, we used the Cell-DEVS WebViewer, a lightweight, web-based platform to 

visualize the outputs of the simulation in video form (St-Aubin, Hesham, Wainer, 2018). The formal Cell-

DEVS model for the simulation studied is presented in figure 1 below. 

Model parameters 

< X, Y, S, N, {m,n}, type, d, δint, δext, τ, λ, ta > 

X = Ø 

Y = Ø 

S Є {0, 1, 2} Where 0 is a non-urban cell 

   1 is an urbanized cell 

   2 is a growing cell  

type = transport 

 d = 100 ms 

N = {(-1, -1, 0), (-1, 0, 0), (-1, 1, 0),  

(0, -1, 0), (0, 0, 0), (0, 1, 0), (0,0,1) 

(1, -1, 0), (1, 0, 0), (1, 1, 0)} 

τ: N→S  Where S are the rules for cell state transition 
defined in the table to the right 

δint, δext, λ and ta are defined using the standard Cell-
Devs specifications. 
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Transition rules  

unchanged Any value from the Pdi layer 

2 (0,0,0) = 0 AND Probability Threshold is met 

1 (0,0,0) = 2 

2 (0,0,0) = 1 AND Number Urban neighbors < 9 

Figure 1: The formalized LUG model for Cell-DEVS Implementation of the model. 

The first step to prepare the simulation consists of designing a mock map suited to run the simulation and 

convert it to a file of initial states for the simulation. To do so, a map with a restricted set of geospatial 

features was designed (See figure 2) using vector geometry, then converted to a raster format. For this 

experiment, hydrography, road networks and attracting point features were considered. In the map, 

attracting features were labelled in a generic manner. In a real-world scenario, these features could be, for 

example, urban centers, bus stations, commercial centers, learning institutions, etc. Each geospatial feature 

is associated to a cell-state according to its color, as defined in figure 2. Obtaining the initial states for the 

simulation cell-space is, therefore, a matter of associating each pixel of the raster map to a cell-state. 

 

Color Value  Feature name 

 
 

10  Line Feature 

 
 

20  Water 

 
 

99  Water restricted 

 
 

30  Point Feature A 

 
 

40  Point Feature B 

 
 

50  Point Feature C 

 
 

60  Point Features D 

 
 

100  Non-urbanized cell 

 
 

20  Urbanized cell 
 

Figure 2: Sample geospatial map with a legend showing the values associated to each color. 

            

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Figure 3: The gradient for the Pdi layer. 

The second step consists of computing the Pdi factor for each cell. As mentioned before, for a given cell, 

we assumed that the spatial configuration remains static across the simulation. As such, the Pdi factor is also 

static, and its value can be pre-processed and stored in an additional layer, the Pdi layer, that is overlaid on 

the main 2D cell space. Pdi values are can go from 0, the lowest probability of transition, to 1, the highest 

probability of transition. Therefore, the layer can be visually represented using the gradient in figure 3.  

The third and final step consists of generating a set of urbanized cells to trigger the cell transition process 

at simulation start up. Different configurations were tried (single random cells, cells in a cross layout and 

clusters), and clusters provided the most organic experience. Single cells had more difficulty triggering 

initial transitions because they lack other urbanized neighbors which has a significant impact on the 

transition function. Non-urbanized cells were given the value of 100 while urbanized cells were given the 

value of 101. 0 and 1 were avoided because these values were used by the Pdi layer.  
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It should be noted that non-restricted cells can be urbanized. This allows the urbanization process to cross 

roads, rivers and other features and retains the geospatial configuration information for visualization 

purposes. Urban cells that contain a feature will show as a darkened version of the original cell color and 

will have a value that is 1 higher than its non-urban state. Each cell also has an extra state that represents it 

growing. A cell will alternate between growing and urbanized until all neighbors are either urbanized or 

restricted. Once all its neighbors are urbanized, the cell will settle on the urbanized state. By alternating 

states, we guarantee that a cluster cannot stop growing if it doesn’t acquire a new cell. 

3.2 LUG Model parameter study 

To evaluate the effect of each parameter on the results, we systematically modify one parameter while 

keeping the others constant. In most cases, we started by a random selection of parameters, observed the 

outputs, then modified them according to the parameter under study. The experimentation was more 

extensive than what is shown in this section but, for the sake of brevity, only the more interesting cases will 

be discussed. The parameters used will be provided for result reproduction purposes. 

The probability of transition threshold defines the value beyond which the transition equation (4) will cause 

a cell to become urbanized. It has an immediate and obvious impact on the transition process as can be seen 

in the following images. For each of these cases, the simulation was run using the same coefficients while 

varying the threshold only. 

 
Initial State 

 
Threshold 0.5 

 
Threshold 0.7 

 
Threshold 0.9 

 
Threshold 1.1 

 

 

C = 0.000 

DA = -0.016 

DB = -0.237 

DC = 0.043 

DD = 0.275 

DLine = -1.142 

 

 

Figure 4: Variation of the probability of transition threshold. Top-left frame shows the initial state  

of the cell-space. Each following frame shows the final state of the cell-space for a given threshold.  

None of the threshold variation simulation were able to completely urbanize the cell space. However, as 

the threshold increases, the final clusters diminish in size and the total urbanized area is reduced. Since the 

probability equation (4) result must exceed higher thresholds, it is more difficult for the cells to transition 

to an urban state. Note that the effect of restricted cells can already be observed from figures 4 and 5. 
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The impact of the stochastic disturbance is subtler than the threshold variation. It introduces uncertainty in 

the cell transition process; running two simulations with the same parameters will yield different outcomes. 

It should also be noted that without this factor, for a given simulation, it would be possible for some cells 

to never be able to urbanize. To study the stochastic disturbance, the same distance coefficients as before 

were used, a threshold variation of 0.9 was used and the simulation was run twice. 

  

Figure 5: Two simulation run with the same parameters will generate different results. 

In the example above, the difference between both simulation results can be observed. For example, the 

two bottom clusters have begun to merge on the right while they are still distinct on the left. We can also 

see that the simulation on the right has begun wrapping around the cell space while the one the left has not. 

Let us note that wrapping around the cell-space, for an urban growth model, does not reflect reality properly. 

Considering our goal to show that DEVS, as a methodology, can represent urban growth, we adopted this 

simplification to facilitate the definition of transition rules at the edges of the cell-space.    

The distance coefficients, in the LUG equation (4), contribute to the urbanization potential of cells near 

geospatial features. Cells nearer to a feature with a high coefficient will have a higher urbanization potential. 

As the distance between a cell and the point feature increases, the contribution to the urbanization potential 

of the cell decreases proportionally. In both examples below, we can clearly see that the urbanization 

process is skewed towards the point features with more extreme coefficient values. This is made obvious 

by their corresponding Pdi layers. As the urbanized clusters expand outside of the higher weight zones, the 

transition process slows down dramatically and, in both cases the cell space is never entirely urbanized. 

  

 

Coefficients 

C = 0 

DA = -0.016 

DB = -4.237 

DC = 0.043 

DD = 0.0275 

DLine = -0.142 

  

Figure 6: Attraction towards the point feature B (green). 
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Coefficients 

C = 0 

DA = -3.016 

DB = -0.237 

DC = 0.043 

DD = 0.0275 

DLine = -0.142 

  

Figure 7: Attraction towards the point feature A (bright red). 

The impact of increasing the attraction towards linear features was more difficult to analyze. It was expected 

that the Pdi layer would show a distribution parallel to the linear feature representing the road (in gray), this 

is not the case here. This could betray an underlying issue with the function used to calculate the distance 

between a cell and a line. However, it can still be seen that a linear feature crossing the whole cell-space 

has a massive impact on the Pdi layer which shows much higher values across the whole cell-space. 

Accordingly, this simulation managed to urbanize the whole cell-space in about half the time of the 

simulations discussed before. 

  

 

Coefficients 

C = 0 

DA = -0.016 

DB = -0.237 

DC = 0.043 

DD = 0.0275 

DLine = -2.142 

  

Figure 8: Attraction towards linear feature. This simulation urbanized the whole cell 

space. The image is taken halfway through the simulation. 

The case study below combines a high attraction towards point feature B (green) and a medium attraction 

towards point features D (dark red). The coefficient for the linear feature is also high and positive which 

means that cells will have more difficulty transitioning to an urban state when they are near the line. The 

top left cluster mostly stagnated because it has no nearby attracting features and the linear feature acts as a 

repulsive barrier for its expansion. The bottom right cluster expanded greatly because it is very close to 

point feature B (green). It also shows the pull generated by both point features D (dark red).  Finally, the 

animated visualization shows that once outside the darker areas of the Pdi layer, cells have much more 

difficulty transitioning.  
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Coefficients 

C = 0 

DA = -0.016 

DB = -2.437 

DC = -0.243 

DD = -0.975 

DLine = 1.642 

  

Figure 9: A combination of coefficients where point feature B has high attraction, point  

features D have medium attraction and the line feature has high repulsion. 

We also ran different scenarios combining many coefficient variations, the impact of which can be distinctly 

observed in the results, albeit with some difficulty. For example, the Pdi layer shows a definite high 

attraction area delimited by the point features A, B and C with the innermost ring showing a tendency 

towards point feature A. The repulsive effects of point features D can be clearly seen in the simulation 

visualization on the left. Again, the line feature is more difficult to observe but it does seem to flatten the 

Pdi rings on the left side. Furthermore, the lingering effect of the restricted cells (dark blue) is also seen on 

the visualization on the left. Indeed, as cells are growing around the lake, the urban area becomes more 

asymmetric and diverges from the Pdi layer. 

  

 

Coefficients 

C = 0.040 

DA = -1.016 

DB = -1.837 

DC = -0.643 

DD = 1.275 

DLine = 1.642 
 

Figure 10: A combination of coefficients where each feature has a distinct impact on  

the simulation. Image taken at about 1/3 of the simulation length. 

To analyze the effect of varying the spatial configuration of the initial mock map, two additional mock 

maps were built, and the coefficients discussed in the preceding section were tested against them. From 

figure 11 presented below, the impact that a different spatial configuration has on the Pdi layer and the 

simulation itself can be observed. The coefficients favor growth towards the point features A, B and C 

while point features D and the line feature have a repulsive effect on urbanization. The repulsive effect is 

more obvious in the right-most simulation result. The effect of a larger cluster of restricted cells (dark blue) 

is more noticeable in the center map, the result being a highly asymmetrical urban area.  
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Figure 11: Variation on the spatial configuration of the cell space, using coefficients  

from Figure 10. All images taken at about 1/3 of the simulation length. 

4 CONCLUSION 

We presented a Cell-DEVS definition and an implementation of the Logistic Urban Growth model using 

Cell-DEVS, a DEVS based cellular automata formalism. Although Cell-DEVS has been used to model and 

simulate real-world systems in various scenarios, it had yet to be employed to model urban growth. The 

research presented in this paper filled this gap. Since the objective of this paper was to show that urban 

growth could be modeled using a DEVS based methodology, we chose to implement one of the simpler 

CA-based urban growth models based on the logistic equation. The results presented here show that Cell-

DEVS adequately supports the Logistic Urban Growth model. 

Future work on this model should be focused on using real-world data to generate the initial values and 

state of the cell-space. This would provide the data required to verify, validate and likely further improve 

the model. Using real data also implies a calibration phase where the distance coefficients of the logistic 

equation could be obtained from training data using logistic regression or other regression techniques. This 

would be an essential step in the verification and validation of the model as well. Another avenue of research 

would be to altogether implement other popular models of CA based urban growth such as the SLEUTH 

approach or the Markov-CA model. This would provide the opportunity to compare results and performance 

for different approaches. Considering that urban spaces are dynamic and evolutive, adding the capability to 

consider geospatial configuration changes in the map would lead to more realistic simulations of urban 

growth using this model. Integrating aspects of other models, particularly the SLEUTH approach, could 

also lead to more simulation results that are more faithful to the real-world. 

Urban Growth modeling is becoming an invaluable tool for urban planners, municipal government officials 

and other decision makers. Generic modeling tools such as DEVS based tools are uniquely positioned to 

provide a flexible and intuitive process to generate reusable and easy to validate models and simulations. 

Through its hierarchical and modular approach, its decoupling of the models and the simulator, DEVS could 

act as a generic platform for users to model a variety of phenomenon involved in city planning such as 
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vehicle traffic, pedestrian behavior, pollution dispersions and, as this research as shown, urban growth. The 

complexity of modeling and simulation is often prohibitive for non-expert users. Increased ease-of-use and 

adaptability to different scenarios is one way to work around this issue and provide decision makers with 

more varied and better decision-making tools. 
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